Package: ACTCD 1.3-0

Wenchao Ma

ACTCD: Asymptotic Classification Theory for Cognitive Diagnosis

Cluster analysis for cognitive diagnosis based on the Asymptotic Classification Theory (Chiu, Douglas & Li, 2009; <doi:10.1007/s11336-009-9125-0>). Given the sample statistic of sum-scores, cluster analysis techniques can be used to classify examinees into latent classes based on their attribute patterns. In addition to the algorithms used to classify data, three labeling approaches are proposed to label clusters so that examinees' attribute profiles can be obtained.

Authors:Chia-Yi Chiu and Wenchao Ma

ACTCD_1.3-0.tar.gz
ACTCD_1.3-0.zip(r-4.5)ACTCD_1.3-0.zip(r-4.4)ACTCD_1.3-0.zip(r-4.3)
ACTCD_1.3-0.tgz(r-4.4-x86_64)ACTCD_1.3-0.tgz(r-4.4-arm64)ACTCD_1.3-0.tgz(r-4.3-x86_64)ACTCD_1.3-0.tgz(r-4.3-arm64)
ACTCD_1.3-0.tar.gz(r-4.5-noble)ACTCD_1.3-0.tar.gz(r-4.4-noble)
ACTCD_1.3-0.tgz(r-4.4-emscripten)ACTCD_1.3-0.tgz(r-4.3-emscripten)
ACTCD.pdf |ACTCD.html
ACTCD/json (API)

# Install 'ACTCD' in R:
install.packages('ACTCD', repos = c('https://wenchao-ma.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • perm3 - The partial orders of the attribute patterns for 'labeling'
  • perm4 - The partial orders of the attribute patterns for 'labeling'
  • sim.Q - A complete Q-matrix used to generate 'sim.dat'.
  • sim.dat - Simulated data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 7 scripts 278 downloads 5 exports 60 dependencies

Last updated 1 years agofrom:f21b0018e8. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-win-x86_64OKNov 03 2024
R-4.5-linux-x86_64OKNov 03 2024
R-4.4-win-x86_64OKNov 03 2024
R-4.4-mac-x86_64OKNov 03 2024
R-4.4-mac-aarch64OKNov 03 2024
R-4.3-win-x86_64OKNov 03 2024
R-4.3-mac-x86_64OKNov 03 2024
R-4.3-mac-aarch64OKNov 03 2024

Exports:alphacd.clusteretalabelingnpar.CDM

Dependencies:alabamabase64encbslibcachemclicolorspacecommonmarkcrayondigestfansifarverfastmapfontawesomefsGDINAggplot2gluegtablehtmltoolshttpuvisobandjquerylibjsonlitelabelinglaterlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmenloptrnumDerivpillarpkgconfigpromisesR.methodsS3R6rappdirsRColorBrewerRcppRcppArmadillorlangRsolnpsassscalesshinyshinydashboardsourcetoolstibbletruncnormutf8vctrsviridisLitewithrxtable