GDINA - The Generalized DINA Model Framework
A set of psychometric tools for cognitive diagnosis modeling based on the generalized deterministic inputs, noisy and gate (G-DINA) model by de la Torre (2011) <DOI:10.1007/s11336-011-9207-7> and its extensions, including the sequential G-DINA model by Ma and de la Torre (2016) <DOI:10.1111/bmsp.12070> for polytomous responses, and the polytomous G-DINA model by Chen and de la Torre <DOI:10.1177/0146621613479818> for polytomous attributes. Joint attribute distribution can be independent, saturated, higher-order, loglinear smoothed or structured. Q-matrix validation, item and model fit statistics, model comparison at test and item level and differential item functioning can also be conducted. A graphical user interface is also provided. For tutorials, please check Ma and de la Torre (2020) <DOI:10.18637/jss.v093.i14>, Ma and de la Torre (2019) <DOI:10.1111/emip.12262>, Ma (2019) <DOI:10.1007/978-3-030-05584-4_29> and de la Torre and Akbay (2019).
Last updated 2 months ago
cdmcognitive-diagnosisdcmdina-modeldinoestimation-modelsgdinaitem-response-theorypsychometricsopenblascpp
8.71 score 30 stars 6 dependents 94 scripts 754 downloadsACTCD - Asymptotic Classification Theory for Cognitive Diagnosis
Cluster analysis for cognitive diagnosis based on the Asymptotic Classification Theory (Chiu, Douglas & Li, 2009; <doi:10.1007/s11336-009-9125-0>). Given the sample statistic of sum-scores, cluster analysis techniques can be used to classify examinees into latent classes based on their attribute patterns. In addition to the algorithms used to classify data, three labeling approaches are proposed to label clusters so that examinees' attribute profiles can be obtained.
Last updated 1 years ago
fortran
1.00 score 7 scripts 294 downloads